
Linearithmic
Sorting

CS 251 - Data Structures and
Algorithms

Note:
Slides complement the

discussion in class

2

Table of Contents
Sorting using binary heaps
Heap Sort

Quick Sort
Sorting using pivoted
partitions

01

02

3

Heap Sort
01

Sorting using binary heaps

4

"Algorithm 232 - Heapsort“, J.
W. J. Williams, "Communications

of the ACM“, 1964

5https://dl.acm.org/doi/10.1145/512274.512284

https://dl.acm.org/doi/10.1145/512274.512284

Heap Sort Algorithm

1. Build a binary heap and sort down values.

2. heapify: Transforms the input array A into a binary heap (in-place).

3. Which heap order?
a. Max-Heap if sorting in non-descending order.
b. Min-Heap if sorting in non-ascending order.

4. Sort down: Move Max/Min value to the end of the array. Readjust the
heap, and repeat.

6

Heapify and
Heap Sort

algorith heapify(A:array, n:ℤ≥0)
for i from floor(n/2) – 1 to 0 by -1 do

siftdown(A, n, i)
end for

end algorithm

algorith heapsort(A:array)
let n be the size of A
heapify(A, n)
for i from n-1 to 1 by -1 do

swap(A, 0, i)
n ← n - 1
siftdown(A, n, 0)

end for
end algorithm

7

Build heap: [4, 6, 3, 5, 7, 1]
heapify (transform an array into a binary heap)

0 1 2 3 4 5

4 6 3 5 7 1 4 6 3 5 7 1

0 1 2 3 4 5

4 6 3 5 7 1 4

3

1

6

5 7

0 1 2 3 4 5

4 7 3 5 6 1

4

7 3

5 6 1

0 1 2 3 4 5

4 6 3 5 7 1 4 6 5 7

3

1

0 1 2 3 4 5

7 6 3 5 4 1

7

6 3

5 4 10 1 2 3 4 5

4 7 3 5 6 1 4

3

1

7

5 6

0 1 2 3 4 5

7 4 3 5 6 1

7

4 3

5 6 1

8

Sortdown: Swap the root with the last item of the binary heap. Then, fix the “new” binary heap.

0 1 2 3 4 5

7 6 3 5 4 1

0 1 2 3 4 5

1 6 3 5 4 7

0 1 2 3 4 5

6 1 3 5 4 7

0 1 2 3 4 5

6 5 3 1 4 7

0 1 2 3 4 5

6 5 3 1 4 7

0 1 2 3 4 5

4 5 3 1 6 7

0 1 2 3 4 5

5 4 3 1 6 7

0 1 2 3 4 5

5 4 3 1 6 7

0 1 2 3 4 5

1 4 3 5 6 7

0 1 2 3 4 5

4 1 3 5 6 7

0 1 2 3 4 5

4 1 3 5 6 7

0 1 2 3 4 5

3 1 4 5 6 7

0 1 2 3 4 5

3 1 4 5 6 7

0 1 2 3 4 5

1 3 4 5 6 7

9

i = 5

i = 4

i = 3

i = 2

i = 1

Sort Down Remarks

• Sorting in ascending order? Exchange maximum value with the last element of
the array.

• Reorder the rest of the heap. Do not mess with elements at the end of the array.
Remember why?

• Runtime: call sink 𝑛 − 1 times, each one is 𝑂 log2 𝑛 . So, 𝑂 𝑛 log2 𝑛 .

• Heap Sort runtime: 𝑇 𝑛 ≈ 𝑂 𝑛 + 𝑂 𝑛 log2 𝑛 ∈ 𝑂 𝑛 log2 𝑛 .

10

Heap Sort Remarks

The good:

a. Runtime: Θ 𝑛 log 𝑛 . Remember what it means?

b. Space: Θ 1 (aka. In-place).

c. Easy to implement. Very short!

The bad:

a. Not that good in practice due to cache issues (pay attention to CS250 and
CS354)

11

Quick Sort
02

Sorting using pivoted partitions

12

Recall
Merge Sort

algorithm merge(A:array, l:ℤ≥0, m:ℤ≥0, r:ℤ≥0)
n1 ← m – l + 1
n2 ← r – m
let L be an array of size n1 + 1
let R be an array of size n2 + 1

for i from 0 to n1 – 1 do
L[i] ← A[l + i]

end for

for j from 0 to n2 – 1 do
R[j] ← A[m + j + 1]

end for

L[n1] ← ∞, R[n2] ← ∞
i ← 0, j ← 0

for k from l to r do
if L[i] <= R[j] then

A[k] ← L[i]
i ← i + 1

else
A[k] ← R[j]
j ← j + 1

end if
end for

end algorithm

algorithm mergesort(A:array, l:ℤ≥0, r:ℤ≥0)
if l < r then

m ← floor((l+r) / 2)
mergesort(A, l, m)
mergesort(A, m + 1, r)
merge(A, l, m, r)

end if
end algorithm

13

First call:
let A be an array with n comparable items
mergesort(A, 0, n-1)

0

4

1

6

2

3

1 2

3 6

0 1 2

3 4 6

3

5

4

7

5

1

4 5

1 7

3 4 5

1 5 7
0 1 2 3 4 5

1 3 4 5 6 7

0 1 2 3 4 5

4 6 3 5 7 1

0 1 2

4 6 3

1 2

6 3
4 5

7 1

3 4 5

5 7 1

: MergeSort
: merge

14

Merge Sort Remarks

● Algorithm paradigm: Divide & Conquer

● Recursive: 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐𝑟𝑛, 𝑇 1 = 𝑐𝑏

● Non-recursive: 𝑇 𝑛 = 𝑐𝑟𝑛 log2 𝑛 + 𝑐𝑏𝑛

● Runtime complexity: 𝑇 𝑛 ∈ Θ 𝑛 log2 𝑛

● Space: Θ(𝑛) (not an in-place sorting algorithm)

● A popular among software developers and tech interviewers.

15

Hoare, C. A. R. (1961).
Algorithm 64: Quicksort.

Communications of the ACM,
4(7), 321.

16https://dl.acm.org/doi/10.1145/366622.366644

https://dl.acm.org/doi/10.1145/366622.366644
https://dl.acm.org/doi/10.1145/366622.366644

Quick Sort
Algorithm

algorithm partition(A:array, l:ℤ≥0, r:ℤ≥0) → ℤ≥0
p ← A[r]
i ← l – 1
for j from l to r - 1 do

if A[j] < p then
i ← i + 1
swap(A, i, j)

end if
end for
i ← i + 1
swap(A, i, r)
return i

end algorithm

algorithm quicksort(A:array, l:ℤ≥0, r:ℤ≥0)
if l < r then

m ← partition(A, l, r)
quicksort(A, l, m - 1)
quicksort(A, m + 1, r)

end if
end algorithm

17

First call:
let A be an array with n comparable items
quicksort(A, 0, n-1)

0 1 2 3 4 5

1 6 3 5 7 4

0 1 2 3 4 5

1 3 4 5 7 6

0 1 2 3 4 5

1 3 4 5 7 6

0 1 2 3 4 5

1 3 4 5 7 6

0 1 2 3 4 5

1 3 4 5 6 7

0 1 2 3 4 5

1 3 4 5 6 7

18

Randomized Quick
Sort Algorithm

algorithm partition(A:array, l:ℤ≥0, r:ℤ≥0) → ℤ≥0
p ← A[r]
i ← l – 1
for j from l to r - 1 do

if A[j] < p then
i ← i + 1
swap(A, i, j)

end if
end for
i ← i + 1
swap(A, i, r)
return i

end algorithm

algorithm quicksort(A:array, l:ℤ≥0, r:ℤ≥0)
if l < r then

m ← randpartition(A, l, r)
quicksort(A, l, m - 1)
quicksort(A, m + 1, r)

end if
end algorithm

19

First call:
let A be an array with n comparable items
quicksort(A, 0, n-1)

algorithm randpartition(A:array, l:ℤ≥0, r:ℤ≥0) → ℤ≥0
i ← randominteger(l, r)
swap(A, i, r)
return partition(A, l, r)

end algorithm

Quick Sort is not Stable

Insight: Given an array 𝐴 of 𝑛 elements with keys 𝑎0, 𝑎1, … , 𝑎𝑛−1, quick sort
selects a "pivot" and partitions the array into two subarrays: one with elements less
than the pivot and the other with elements greater than the pivot. The choice of
pivot and the method of partitioning can cause elements with equal keys to be
reordered.

The pivot selection is arbitrary, and elements are rearranged based on their
comparison with the pivot. This rearrangement does not necessarily preserve the
original order of elements with equal keys.

When elements are moved during partitioning, their original relative positioning is
not guaranteed to be maintained unless additional measures are taken.

20

Quick Sort Analysis

Reality: Not a trivial analysis due to the randomness while selecting a pivot and building the
partitions.

Best case:
a. Pivot value to be the median value of the array, making the partitions to be

divided evenly (balanced partitions).
b. Time complexity like Merge Sort: 𝑂 𝑛 log2 𝑛 .

Worst case:
a. Pivot to be the minimum or maximum value in the array. Making one of the

partitions to have 𝑛 − 1 elements (unbalanced partitions).
b. Time Complexity: 𝑇 𝑛 = 𝑛 + 𝑛 − 1 + 𝑛 − 2 +⋯2 + 1 ∈ 𝑂(𝑛2)

21

Big Issue: Having a Good Pivot

Value at some random index? Value at
median index? First element? Last
element?

It is hard to tell.

So, why do we care about Quick Sort:
• It is fast!
• We can do it in-place.
• Unlikely (but not impossible) to fall into

the worst-case.

22

Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

Done, Sort Of
Do you have any questions?

23

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Linearithmic Sorting
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Heap Sort
	Slide 5: "Algorithm 232 - Heapsort“, J. W. J. Williams, "Communications of the ACM“, 1964
	Slide 6: Heap Sort Algorithm
	Slide 7: Heapify and Heap Sort
	Slide 8
	Slide 9
	Slide 10: Sort Down Remarks
	Slide 11: Heap Sort Remarks
	Slide 12: Quick Sort
	Slide 13: Recall Merge Sort
	Slide 14
	Slide 15: Merge Sort Remarks
	Slide 16: Hoare, C. A. R. (1961). Algorithm 64: Quicksort. Communications of the ACM, 4(7), 321.
	Slide 17: Quick Sort Algorithm
	Slide 18
	Slide 19: Randomized Quick Sort Algorithm
	Slide 20: Quick Sort is not Stable
	Slide 21: Quick Sort Analysis
	Slide 22: Big Issue: Having a Good Pivot
	Slide 23: Done, Sort Of

