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Heap Sort
01

Sorting using binary heaps
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"Algorithm 232 - Heapsort“, J. 
W. J. Williams,  "Communications 

of the ACM“, 1964

5https://dl.acm.org/doi/10.1145/512274.512284

https://dl.acm.org/doi/10.1145/512274.512284


Heap Sort Algorithm

1. Build a binary heap and sort down values.

2. heapify: Transforms the input array A into a binary heap (in-place).

3. Which heap order?
a. Max-Heap if sorting in non-descending order.
b. Min-Heap if sorting in non-ascending order.

4. Sort down: Move Max/Min value to the end of the array. Readjust the 
heap, and repeat.
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Heapify and 
Heap Sort

algorith heapify(A:array, n:ℤ≥0)
for i from floor(n/2) – 1 to 0 by -1 do

siftdown(A, n, i)
end for

end algorithm

algorith heapsort(A:array)
let n be the size of A
heapify(A, n)
for i from n-1 to 1 by -1 do

swap(A, 0, i)
n ← n - 1
siftdown(A, n, 0)

end for
end algorithm
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Build heap: [4, 6, 3, 5, 7, 1]
heapify (transform an array into a binary heap)
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Sortdown: Swap the root with the last item of the binary heap. Then, fix the “new” binary heap.
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Sort Down Remarks

• Sorting in ascending order? Exchange maximum value with the last element of 
the array.

• Reorder the rest of the heap. Do not mess with elements at the end of the array. 
Remember why?

• Runtime: call sink 𝑛 − 1 times, each one is 𝑂 log2 𝑛 . So, 𝑂 𝑛 log2 𝑛 .

• Heap Sort runtime: 𝑇 𝑛 ≈ 𝑂 𝑛 + 𝑂 𝑛 log2 𝑛 ∈ 𝑂 𝑛 log2 𝑛 .
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Heap Sort Remarks

The good:

a. Runtime: Θ 𝑛 log 𝑛 . Remember what it means?

b. Space: Θ 1 (aka. In-place).

c. Easy to implement. Very short!

The bad:

a. Not that good in practice due to cache issues (pay attention to CS250 and 
CS354)

11



Quick Sort
02

Sorting using pivoted partitions
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Recall
Merge Sort

algorithm merge(A:array, l:ℤ≥0, m:ℤ≥0, r:ℤ≥0)
n1 ← m – l + 1
n2 ← r – m
let L be an array of size n1 + 1
let R be an array of size n2 + 1

for i from 0 to n1 – 1 do
L[i] ← A[l + i]

end for

for j from 0 to n2 – 1 do
R[j] ← A[m + j + 1]

end for

L[n1] ← ∞, R[n2] ← ∞
i ← 0, j ← 0

for k from l to r do
if L[i] <= R[j] then

A[k] ← L[i]
i ← i + 1

else
A[k] ← R[j]
j ← j + 1

end if
end for

end algorithm

algorithm mergesort(A:array, l:ℤ≥0, r:ℤ≥0)
if l < r then

m ← floor((l+r) / 2)
mergesort(A, l, m)
mergesort(A, m + 1, r)
merge(A, l, m, r)

end if
end algorithm
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First call:
let A be an array with n comparable items
mergesort(A, 0, n-1)
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Merge Sort Remarks

● Algorithm paradigm: Divide & Conquer

● Recursive: 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐𝑟𝑛,  𝑇 1 = 𝑐𝑏

● Non-recursive: 𝑇 𝑛 = 𝑐𝑟𝑛 log2 𝑛 + 𝑐𝑏𝑛

● Runtime complexity: 𝑇 𝑛 ∈ Θ 𝑛 log2 𝑛

● Space: Θ(𝑛) (not an in-place sorting algorithm)

● A popular among software developers and tech interviewers.
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Hoare, C. A. R. (1961). 
Algorithm 64: Quicksort. 

Communications of the ACM, 
4(7), 321.

16https://dl.acm.org/doi/10.1145/366622.366644
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Quick Sort 
Algorithm

algorithm partition(A:array, l:ℤ≥0, r:ℤ≥0) → ℤ≥0
p ← A[r]
i ← l – 1
for j from l to r - 1 do

if A[j] < p then
i ← i + 1
swap(A, i, j)

end if
end for
i ← i + 1
swap(A, i, r)
return i

end algorithm

algorithm quicksort(A:array, l:ℤ≥0, r:ℤ≥0)
if l < r then

m ← partition(A, l, r)
quicksort(A, l, m - 1)
quicksort(A, m + 1, r)

end if
end algorithm
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First call:
let A be an array with n comparable items
quicksort(A, 0, n-1)
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Randomized Quick 
Sort Algorithm

algorithm partition(A:array, l:ℤ≥0, r:ℤ≥0) → ℤ≥0
p ← A[r]
i ← l – 1
for j from l to r - 1 do

if A[j] < p then
i ← i + 1
swap(A, i, j)

end if
end for
i ← i + 1
swap(A, i, r)
return i

end algorithm

algorithm quicksort(A:array, l:ℤ≥0, r:ℤ≥0)
if l < r then

m ← randpartition(A, l, r)
quicksort(A, l, m - 1)
quicksort(A, m + 1, r)

end if
end algorithm
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First call:
let A be an array with n comparable items
quicksort(A, 0, n-1)

algorithm randpartition(A:array, l:ℤ≥0, r:ℤ≥0) → ℤ≥0
i ← randominteger(l, r)
swap(A, i, r)
return partition(A, l, r)

end algorithm



Quick Sort is not Stable

Insight: Given an array 𝐴 of 𝑛 elements with keys 𝑎0, 𝑎1, … , 𝑎𝑛−1, quick sort 
selects a "pivot" and partitions the array into two subarrays: one with elements less 
than the pivot and the other with elements greater than the pivot. The choice of 
pivot and the method of partitioning can cause elements with equal keys to be 
reordered.

The pivot selection is arbitrary, and elements are rearranged based on their 
comparison with the pivot. This rearrangement does not necessarily preserve the 
original order of elements with equal keys.

When elements are moved during partitioning, their original relative positioning is 
not guaranteed to be maintained unless additional measures are taken.
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Quick Sort Analysis

Reality: Not a trivial analysis due to the randomness while selecting a pivot and building the 
partitions.

Best case:
a. Pivot value to be the median value of the array, making the partitions to be 

divided evenly (balanced partitions).
b. Time complexity like Merge Sort: 𝑂 𝑛 log2 𝑛 .

Worst case:
a. Pivot to be the minimum or maximum value in the array. Making one of the 

partitions to have 𝑛 − 1 elements (unbalanced partitions).
b. Time Complexity: 𝑇 𝑛 = 𝑛 + 𝑛 − 1 + 𝑛 − 2 +⋯2 + 1 ∈ 𝑂(𝑛2)
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Big Issue: Having a Good Pivot

Value at some random index? Value at 
median index? First element? Last 
element?

It is hard to tell.

So, why do we care about Quick Sort:
• It is fast!
• We can do it in-place.
• Unlikely (but not impossible) to fall into 

the worst-case.
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Done, Sort Of
Do you have any questions?
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